7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет воздуховода приточной системы вентиляции

Аэродинамический расчет систем вентиляции

Аэродинамический расчет систем это очень важная составляющая проекта. Ведь именно за результатами этого расчета подбирается вентиляционное оборудование, а также в процессе подбирают размеры воздуховодов. Это прям можно назвать «сердцем» проекта. Расчет производится для круглых и прямоугольных воздуховодов, также значение имеет их материал и параметры воздуха. Разберем аэродинамический расчет воздуховодов на примере общеобменной вентиляции. Для систем аспирации и некоторых других местных вентиляционных систем расчет немножко другой.

Основные формулы аэродинамического расчета

Первым делом необходимо сделать аэродинамический расчет магистрали. Напомним что магистральным воздуховодом считается наиболее длинный и нагруженный участок системы. За результатами этих вычислений и подбирается вентилятор.

Рассчитывая магистральную ветвь желательно, чтобы скорость в воздуховоде увеличивалась по ходу приближения к вентилятору!

Только не забывайте об увязке остальных ветвей системы. Это важно! Если нет возможности произвести увязку на ответвлениях воздуховодов в пределах 10% нужно применять диафрагмы. Коэффициент сопротивления диафрагмы рассчитывается за формулой:

Если неувязка будет больше 10%, когда горизонтальный воздуховод входит в вертикальный кирпичный канал в месте стыковки необходимо разместить прямоугольные диафрагмы.

Основная задача расчета состоит из нахождения потерь давления. Подбирая при этом оптимальный размер воздуховодов и контролирую скорость воздуха. Общие потери давления представляют собой сумму двух компонентов — потерь давления по длине воздуховодов (на трение) и потерь в местных сопротивлениях. Расчитываются они по формулам

Эти формулы правильны для стальных воздуховодов, для всех остальных вводится коэффициент поправки. Он берется из таблицы в зависимости от скорости и шероховатости воздуховодов.

Для прямоугольных воздухопроводов расчетной величиной принимается эквивалентный диаметр.

Рассмотрим последовательность аэродинамического расчета воздуховодов на примере офисов , приведенных в предыдущей статье, по формулам. А затем покажем как он выглядит в программке Excel.

Пример расчета

По расчетам в кабинете воздухообмен составляет 800 м3/час. Задание было запроектировать воздуховоды в кабинетах не больше 200 мм высотой. Размеры помещения даны заказчиком. Воздух подается при температуре 20°С, плотность воздуха 1,2 кг/м3.

Проще будет если результаты заносить в таблицу такого вида

Сначала мы сделаем аэродинамический расчет главной магистрали системы. Теперь все по-порядку:

  • Разбиваем магистраль на участки по приточным решеткам. У нас в помещении восемь решеток, на каждую приходится по 100 м3/час. Получилось 11 участков. Вводим расход воздуха на каждом участке в таблицу.

  • Записываем длину каждого участка.
  • Рекомендуемая максимальная скорость внутри воздуховода для офисных помещений до 5 м/с. Поэтому подбираем такой размер воздуховода, чтобы скорость увеличивалась по мере приближения к вентиляционному оборудованию и не превышала максимальную. Это делается для избежания шума в вентиляции . Возьмем для первого участка берем воздуховод 150х150, а для последнего 800х250.

V1=L/3600F =100/(3600*0,023)=1,23 м/с.

V11= 3400/3600*0,2= 4,72 м/с

Нас результат устраивает. Определяем размеры воздуховодов и скорость по этой формуле на каждом участке и вносим в таблицу.

  • Начинаем расчеты потерь давления. Определяем эквивалентный диаметр для каждого участка, например первого dэ=2*150*150/(150+150)=150. Затем заполняем все данные необходимые для расчета из справочной литературы или вычисляем: Re=1,23*0,150/(15,11*10^-6)=12210. λ=0,11(68/12210+0,1/0,15)^0,25=0,0996 Шероховатость разных материалов разная.
    • Динамическое давление Pд=1,2*1,23*1,23/2=0,9 Па тоже записывается в столбец.
    • Из таблицы 2.22 определяем удельные потери давления или рассчитываем R=Pд*λ/d= 0,9*0,0996/0,15=0,6 Па/м и заносим в столбик. Затем на каждом участке определяем потери давления на трение: ΔРтр=R*l*n=0,6*2*1=1,2 Па.
    • Коэффициенты местных сопротивлений берем из справочной литературы. На первом участке у нас решетка и увеличение воздуховода в сумме их КМС составляет 1,5.
    • Потери давления в местных сопротивлениях ΔРм=1,5*0,9=1.35 Па
    • Находим суму потерь давления на каждом участке = 1.35+1.2=2,6 Па. А в итоге и потери давления во всей магистрали = 185,6 Па. таблица к тому времени будет иметь вид

    После этого аэродинамический расчет можно считать завершенным. Для круглых воздуховодов принцип расчета такой же, только эквивалентный диаметр приравнивается к диаметру воздуховода.

    Поэтапная работа с аэродинамическим расчетом в Excel

    Если вам нужно сделать аэродинамический расчет, но вы не готовы просчитывать эти колоссальные формулы вручную, тогда поможет Excel.

    По ссылке размещен файл Excel , который можно скачать или редактировать онлайн. Для получения результата необходимо заполнить всего 6 столбцов таблицы, а далее программа сделает все сама. Возьмем все те же офисы для достоверности результатов. Поэтапно вводим:

    1. Расход воздуха на каждом участке.
    2. Длину каждого из них.
    3. Рекомендуемую скорость. После заполнения, в файле уже будет рассчитано минимальная необходимая площадь сечения.
    4. Ориентируясь по рекомендуемой площади нужно подобрать размер воздуховода. Просто введите высоту и ширину в столбик F и G, как тут же рассчитается скорость на участке и эквивалентный диаметр. В итоге и число Рейнольдса.
    5. Эквивалентная шероховатость вводится также вручную.
    6. На каждом участке необходимо будет посчитать сумму КМС и также занести в таблицу.
    7. Наслаждаться результатом расчетов!

    Напомним, аэродинамический расчет в Excel сделан для прямоугольных стальных воздуховодов при температуре подаваемого воздуха 20°С. Если у вас параметры другие, замените значение плотности, шероховатости и вязкости на ваши. Таблица полностью отвечает расчетным формулам и готова к использованию. Успешных вам аэродинамических расчетов.

    Как рассчитываются параметры вентиляционных систем

    Проектирование вентиляции жилого, общественного или производственного здания проходит в несколько этапов. Воздухообмен определяется исходя из нормативных данных, используемого оборудования и индивидуальных пожеланий заказчика. Объем проекта зависит от типа здания: одноэтажный жилой дом или квартира рассчитываются быстро, с минимальным количеством формул, а для производственного объекта требуется серьёзная работа. Методика расчета вентиляции строго регламентирована, а исходные данные прописаны в СНиП, ГОСТ и СП.

    Этапы

    Подбор оптимальной по мощности и стоимости системы воздухообмена проходит пошагово. Порядок проектирования очень важен, так как от его соблюдения зависит эффективность работы конечного продукта:

    • Определение типа вентсистемы. Проектировщик анализирует исходные данные. Если требуется проветрить небольшое жилое помещение, то выбор падает на приточно-вытяжную систему с естественным побуждением. Этого будет достаточно, когда расход воздуха небольшой, вредных примесей нет. Если требуется рассчитать большой венткомплекс для завода или общественного здания, то предпочтение отдаётся механической вентиляции с функцией подогрева/охлаждения приточки, а если понадобится, то и с расчётом по вредностям.
    • Анализ выбросов. Сюда входит: тепловая энергия от осветительных приборов и станков; испарения от станков; выбросы (газы, химикаты, тяжёлые металлы).
    • Расчет воздухообмена. Задача систем вентилирования – удаление из помещения избытков тепла, влаги, примесей с равновесной или чуть отличающейся подачей свежего воздуха. Для этого определяется кратность воздухообмена, согласно которой подбирается оборудование.
    • Подбор оборудования. Производится по полученным параметрам: требуемый объем воздуха на приточку/вытяжку; температура и влажность внутри помещения; наличие вредных выбросов, подбираются вентустановки или готовые мультикомплексы. Самый важный из параметров – объём воздуха, необходимый для поддержания проектной кратности. Фильтры, калориферы, рекуператоры, кондиционеры и гидравлические насосы идут как дополнительные устройства сети, обеспечивающие качество воздуха.

    Расчёт выбросов

    Объём воздухообмена и интенсивность работы системы зависят от двух этих параметров:

    K1 – загрузочный коэффициент 0,7-0,9

    Т – температура воды, 0 С

    F-площадь поверхности испарения, м 2 ;

    Рн1, Рн2 — парциальные давления насыщенного водяного пара при определенной температуре воды и воздуха в помещении, Па;

    РБ – давление барометрическое. Па.

    Используя данные, полученные в результате вычисления вредных выделений, проектировщик продолжает рассчитывать параметры вентиляционной системы.

    Вычисление воздухообмена

    Специалисты используют две основные схемы:

    • По укрупненным показателям. В данной методике не предусматриваются вредные выбросы, такие как тепло и вода. Условно назовем его «Способ №1».
    • Метод с учётом избытков тепла и влаги. Условное название «Способ №2».

    Способ №1

    Единица измерения — м 3 /ч (кубические метры в час). Применяют две упрощенные формулы:

    L=K ×V(м 3 /ч); L=Z ×n (м 3 /ч), где

    K – кратность воздухообмена. Отношение объёма приточки за одни час, к общему воздуху в помещении, крат в час;
    V – объём помещения, м 3 ;
    Z – значение удельного обмена воздуха за единицу верчения,
    n – количество единиц измерения.

    Подбор вентрешёток осуществляется по специальной таблице. При подборе также учитывается средняя скорость прохождение потока воздуха по каналу.

    Таблица выбора размеров вентиляционных решёток

    Способ №2

    При расчёте учитывается ассимиляция тепла и влаги. Если в производственном или общественном здании избыток тепла, то используется формула:

    где ΣQ — сумма тепловыделений от всех источников, Вт;
    с – тепловая ёмкость воздуха, 1 кДж/(кг*К);
    tyx – температура воздуха, направленного на вытяжку,°С;
    tnp — температура воздуха, направленного на приточку,°С;
    Температура воздуха, направленного на вытяжку:

    где tp.3 – нормативная тем-ра в рабочей зоне, 0 С;
    ψ- коэффициент увеличение температуры, зависящий от высоты измерения, равный 0,5-1,5 0 С/м;
    Н – длина плеча от пола до середины вытяжки, м.

    Когда технологический процесс предполагает выделение большого объема влаги, то используется другая формула:

    где G – объём влаги, кг/ч;
    dyx и dnp – содержание воды на один килограмм сухого воздуха приточки и вытяжки.

    Существует несколько случаев, более подробно описанных в нормативной документации, когда требуемые воздухообмен определяется по кратности:

    k – кратность смены воздуха в помещении, раз в час;
    V — объём помещения, м 3 .

    Расчёт сечения

    Площадь поперечного сечения воздуховода измеряется в м 2 . Её можно посчитать по формуле:

    где v – скорость воздушных масс внутри канала, м/с.

    Различается для основных воздуховодов 6-12 м/с и боковых придатков не более 8 м/с. Квадратура влияет на пропускную способность канала, нагрузку на него, а также уровень шума и способ монтажа.

    Расчёт потерь давления

    Стенки воздуховода не гладкие, и внутренняя полость не заполнена вакуумом, поэтому часть энергии воздушных масс при движении теряется на преодоления этих сопротивлений. Величина потери рассчитывается по формуле:

    где ג – сопротивление трению, определяется, как:

    Формулы, приведенные выше, являются правильными для каналов круглого сечения. Если воздуховод квадратный или прямоугольный, то существует формула приведения к эквиваленту диаметра:

    где a,b – размеры сторон канала, м.

    Мощность напора и двигателя

    Напор воздуха от лопастей H должен полностью компенсировать потери давления P, при этом создавая расчётное динамическое Pд на выходе.

    Мощность электрического двигателя вентилятора:

    Подбор калорифера

    Часто отопление интегрируется в систему вентиляции. Для этого используются калориферы, разные виды рекуператоров, а также метод рециркуляции. Выбор устройства осуществляется по двум параметрам:

    • Qв – предельный расход тепловой энергии, Вт/ч;
    • Fk – определение поверхности нагрева для калорифера.

    Расчёт гравитационного давления

    Применяется только для естественной системы вентилирования. С его помощью определяется её производительность без механического побуждения.

    Подбор оборудования

    По полученным данным о воздухообмене, форме и размере сечение воздуховодов и решёток, количестве энергии для обогрева подбирается основное оборудование, а также фитинги, дефлектор, переходники и другие сопутствующие детали. Вентиляторы подбираются с запасом мощности под пиковые периоды работы, воздуховоды с учетом агрессивности среды и объёмов вентилирования, а калориферы и рекуператоры — исходя из тепловых запросов системы.

    Ошибки при проектировании

    На этапе создания проекта нередко встречаются ошибки и недоработки. Это может быть превышенный шумовой фон, обратная или недостаточная тяга, задувание (верхние этажи многоэтажных жилых домов) и другие проблемы. Часть из них можно решить и после завершения монтажа, с помощью дополнительных установок.

    Яркий пример низкоквалифицированного расчета — недостаточная тяга на вытяжке из производственного помещения без особо вредных выбросов. Допустим, вентканал заканчивается круглой шахтой, возвышающейся над крышей на 2 000 – 2 500 мм. Поднимать её выше не всегда возможно и целесообразно, и в подобных случаях используется принцип факельного выброса. В верхней части круглой вентшахты устанавливается наконечник с меньшим диаметром рабочего отверстия. Создаётся искусственное сужение сечения, которое влияет на скорость выброса газа в атмосферу — она многократно увеличивается.

    Пример проекта

    Методика расчёта вентиляции позволяет получить качественную внутреннюю среду, правильно оценив негативные факторы, её ухудшающие. В компании «Мега.ру» работают профессиональные проектировщики инженерных систем любой сложности. Мы оказываем услуги на территории Москвы и соседних областей. Также компания успешно занимается удалённым сотрудничеством. Все способы связи указаны на странице «Контакты», обращайтесь.

    Расчёт воздуховодов систем вентиляции

    Расчёт воздуховодов вентиляции является одним из этапов расчета вентиляции и заключается в определении размеров воздуховода в зависимости от расхода воздуха, который должен проходить через рассматриваемый воздуховод. Кроме того, возникают задачи по определению площади поверхности воздуховода. Рассмотрим их более подробно.

    Расчёт воздуховодов онлайн

    Исходные данные
    Расход воздуха:м 3 /ч
    Максимальная скорость воздуха:м/с
    Результаты расчета
    ПараметрСечениеСкоростьDэквПотери
    Сечение круглого воздуховода:
    Рекомендуемые сечения прямоугольных воздуховодов:
    Допустимые сечения прямоугольных воздуховодов:

    Для расчета воздуховодов рекомендуем воспользоваться онлайн-калькулятором, расположенным выше. Исходными данными для расчета являются расход воздуха и максимальная допустимая скорость воздуха в воздуховоде.

    Преимуществом нашего калькулятора является то, что в результате расчета вы узнаете не только рекомендуемое сечение круглых и/или прямоугольных воздуховодов, но и фактическую скорость воздуха в них, эквивалентный диаметр и потери давления на 1 метр длины.

    О расчете площади воздуховодов читайте в отдельной статье.

    Расчёт сечения воздуховодов

    Задача расчёта сечения воздуховодов вентиляции может звучать по-разному:

    • расчёт воздуховодов вентиляции
    • расчёт воздуха в воздуховоде
    • расчёт сечения воздуховодов
    • формула расчёта воздуховодов
    • расчёт диаметра воздуховода

    Следует понимать, что все вышеперечисленные расчёты — по сути, одна и та же задача, которая сводится к определению площади сечения воздуховода, по которому протекает расход воздуха G [м 3 /час].

    Алгоритм расчета сечения воздуховодов

    Расчет сечения воздуховодов подразумевает определение размеров воздуховодов в зависимости от расхода пропускаемого воздуха. Он выполняется в 4 этапа:

    1. Пересчет расхода воздуха в м 3 /с
    2. Выбор скорости воздуха в воздуховоде
    3. Определение площади сечения воздуховода
    4. Определение диаметра круглого или ширины и высоты прямоугольного воздуховода.

    На первом этапе расчёта воздуховода расход воздуха G, выраженный, как правило, в м 3 /час, переводится в м 3 /с. Для этого его необходимо разделить на 3600:

    • G [м 3 /c] = G [м 3 /час] / 3600

    На втором этапе следует задать скорость движения воздуха в воздуховоде. Скорость следует именно задать, а не рассчитать. То есть выбрать ту скорость движения воздуха, которая представляется оптимальной.

    Высокая скорость воздуха в воздуховоде позволяет использовать воздуховоды малого сечения. Однако при этом поток воздуха будет шуметь, а аэродинамическое сопротивление воздуховода сильно возрастёт.

    Малая скорость воздуха в воздуховоде обеспечивает тихий режим работы системы вентиляции и малое аэродинамическое сопротивление, но делает воздуховоды очень громоздкими.

    Для систем общеобменной вентиляции оптимальной скоростью воздуха в воздуховоде считается 4 м/с. Для больших воздуховодов (600×600 мм и более) скорость воздуха может быть повышена до 6 м/с. В системах дымоудаления скорость воздуха может достигать и превышать 10 м/с.

    Итак, на втором этапе расчета воздуховодов задаётся скорость движения воздуха v [м/с].

    На третьем этапе определяется требуемая площадь сечения воздуховода путем деления расхода воздуха на его скорость:

    • S [м 2 ] = G [м 3 /c] / v [м/с]

    На четвёртом, заключительном, этапе под полученную площадь сечения воздуховода подбирается его диаметр или длины сторон прямоугольного сечения.

    Таблица сечений воздуховодов

    В помощь проектировщикам разработано несколько таблиц сечений воздуховодов, которые позволяют быстро подобрать сечение в зависимости от полученной площади.

    Пример расчёта воздуховода

    В качестве примера рассчитаем сечение воздуховода с расходом воздуха 1000 м 3 /час:

    1. G = 1000/3600 = 0,28 м 3 /c
    2. v = 4 м/с
    3. S = 0,28 / 4 = 0,07 м 2
    4. В случае круглого воздуховода его диаметр составил бы D = корень (4·S/ π) ≈ 0,3 м = 300мм. Ближайший стандартный диаметр воздуховода — 315 мм.

    В случае прямоугольного воздуховода необходимо подобрать такие А и В, чтобы их произведение было равно примерно 0,07. При этом рекомендуется, чтобы А и В не отличались друг от друга более чем в три раза, то есть воздуховод 700×100 — не лучший вариант. Более хорошие варианты: 300×250, 350×200.

    Эквивалентный диаметр воздуховода

    При сравнении круглых и прямоугольных воздуховодов разного сечения с точки зрения аэродинамики прибегают к понятию эквивалентного диаметра воздуховода. С его помощью можно определить, какой из двух вариантов сечений является предпочтительным.

    Что такое эквивалентный диаметр воздуховода

    Эквивалентный диаметр прямоугольного воздуховода — это диаметр воображаемого круглого воздуховода, в котором потеря давления на трение была бы равна потере давления на трение в исходном прямоугольном воздуховоде при одинаковой длине обоих воздуховодов.

    В книгах и учебниках В. Н. Богословского такой диаметр называется «Эквивалентный по скорости диаметр», в литературе П. Н. Каменева — «Равновеликий диаметр по потерям на трение».

    Расчет эквивалентного диаметра воздуховодов

    Эквивалентный диаметр прямоугольного воздуховода вычисляется по формуле:

    • Dэкв_пр = 2·А·В / (А+В), где А и В — ширина и высота прямоугольного воздуховода.

    Например, эквивалентный диаметр воздуховода 500×300 равен 2·500·300 / (500+300) = 375 мм. Это означает, что круглый воздуховод диаметром 375 мм будет иметь такое же аэродинамическое сопротивление, что и прямоугольный воздуховод 500×300 мм.

    Эквивалентный диаметр квадратного воздуховода равен стороне квадрата:

    И этот факт весьма интересен, ведь обычно чем больше площадь сечения воздуховода, тем ниже его сопротивление. Однако круглая форма сечения воздуховода имеет наилучшие аэродинамические показатели. Именно поэтому сопротивление квадратного и круглого воздуховодов равны, хотя площадь сечния квадратного воздуховода на 27% больше площади сечения круглого воздуховода.

    В общем случае формула для эквивалентного диаметра воздуховода выглядит следующим образом:

    • Dэкв = 4·S / П, где S и П — соответственно, площадь и периметр воздуховода.

    Используя эту формулу можно подтвердить правильность вышеприведённых формул для прямоугольного и квадратного воздуховодов, а также убедиться в том, что эквивалентный диаметр круглого воздуховода равен диаметру этого воздуховода:

    • Dкругл = 4·π·R 2 / 2·π·R = 2R = D.

    Кроме того, для расчета может помочь таблица эквивалентного диаметра воздуховодов

    Пример расчета эквивалентного диаметра воздуховодов и некоторые выводы

    В качестве примера определим эквивалентный диаметр воздуховода 600×300:

    Dэкв_600_300 = 2·600·300 / (600+300) = 400 мм.

    Интересно отметить, что площадь сечения круглого воздуховодам диаметром 400 мм составляет 0,126 м 2 , а площадь сечения воздуховода 600×300 составляет 0,18 м 2 , что на 42% больше. Расход стали на 1 метр круглого воздуховода сечением 400 мм составляет 1,25 м 2 , а на 1 метр воздуховода сечением 600×300 — 1,8 м 2 , что на 44% больше.

    Таким образом, любой аналогичный круглому прямоугольный воздуховод значительно проигрывает ему как в компактности, так и в металлоемкости.

    Читать еще:  Справится даже новичок! Как сделать вытяжную вентиляцию своими руками

    Рассмотрим ещё один пример — определим эквивалентный диаметр воздуховода 500×100 мм:

    Dэкв_500_100 = 2·500·100 / (500+100) = 167 мм.

    Здесь разница в площади сечения и в металлоемкости достигает 2,5 раз. Таким образом, формула эквивалентного диаметра для прямоугольного воздуховода объясняет тот факт, что чем больше «расплющен» воздуховод (чем больше разница между значениями А и В), тем менее эффективен этот воздуховод с аэродинамической точки зрения.

    Это одна из причин, по которой в вентиляционной технике не рекомендуется применять воздуховоды, в сечении которых одна сторона превышает другую более чем в три раза.

    Расчет вентиляции с помощью онлайн калькулятора

    Рейтингне забываем

    При помощи данных калькуляторов, Вы сможете подобрать: вентилятор на вытяжной зонт пристенного типа; островного; потери даления в воздуховоде; кратность воздухообмена для помещений и.т. д.

    По какой формуле происходит расчёт L (m³/ч) = S (m²) × V (m/c) × 3600

    Для определения п роизводительности вентилятора (м³/ч), необходимо ввести значения в графы сторона А — В и скорость потока на срезе зонта

    Формула для круглого вытяжного зонта L (m³/ч) = πR² × V (m/c) × 3600

    Для определения п роизводительности вентилятора (м³/ч), необходимо ввести значения в графы диаметр и скорость потока на срезе зонта

    Формула для расчёта Pтр = ((0,15*l/d) * (v*v*1,2)/2)*9,8

    Формула для расчёта Pтр = ((0,15*l/(2*a*b/(a+b))) * (v*v*1,2)/2)*9,8

    Формула расчёта вентиляции по кратности L = n*V

    Расчёт кратности воздухообмена в помещений любых типов

    Выберите из выпадающегося меню Ваш вариант и введите объём помещения и получите нужный результат

    Диаметр воздуховода для круглого сечения

    Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3

    Формула по которой происходит расчёт

    D = 2000*√(L/(3600*3,14*V))
    D — диаметр (мм)
    L — воздухообмен помещения (м³/ч)
    V — скорость воздуха (м/с)

    Диаметр воздуховода для квадратного сечения

    Формула по которой происходит расчёт

    Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3

    Полезные материалы

    Диагностика систем вентиляции
    Вентиляция. Виды и стоимость услуг
    Чиллер-фанкойл
    MDV MS9 Vi-09HRN1 / MO AIi-09HN1 — 19900 руб.
    Монтаж кондиционера в Щербинке

    Мы занимаемся установкой систем вентиляции и кондиционирования в Подольске с 2009 года, затем география наших услуг расширилась до городов Щербинка, Чехов, Серпухов, Домодедово.

    Сейчас наши специалисты выезжают в города по всей Московской области. Квалификация подтверждается ежегодно, путём прохождения аттестации в климатических компаниях мировых лидеров.

    Полученные знания и навыки позволяют нам найти и решить проблему любой сложности.

    Наши цены Вас приятно удивят!

    Монтаж кондиционера или вентиляционного оборудования можно заказать по телефонам в Подольске, Чехове, Щербинке и других городах Московской области

    О Компании

    Климатическая техника сегодня – уже не роскошь, а иногда, это даже потребность и необходимость. Чтобы Ваш дом был полон заботы и комфорта, кондиционер – одна из его немногих составляющих.

    Меню опросов

    Контакты

    Адрес: МО, Г.о. Подольск,
    Железнодорожная
    2б, офис1

    Как рассчитать сечение и диаметр воздуховода?

    Для передачи приточного или вытяжного воздуха от вентиляционных установок в гражданских или производственных зданиях применяются воздухопроводы различной конфигурации, формы и размера. Зачастую их приходится прокладывать по существующим помещениям в самых неожиданных и загроможденных оборудованием местах. Для таких случаев правильно рассчитанное сечение воздуховода и его диаметр играют важнейшую роль.

    Схема размеров узла прохода.

    Факторы, оказывающие влияние на размеры воздухопроводов

    На проектируемых или вновь строящихся объектах удачно проложить трубопроводы вентиляционных систем не составляет большой проблемы – достаточно согласовать месторасположение систем относительно рабочих мест, оборудования и других инженерных сетей. В действующих промышленных зданиях это сделать гораздо сложнее в силу ограниченного пространства.

    Схема соединения оборудования для принудительной вентиляции.

    Этот и еще несколько факторов оказывают влияние на расчет диаметра воздуховода:

    1. Один из главных факторов – это расход приточного или вытяжного воздуха за единицу времени (м 3 /ч), который должен пропустить данный канал.
    2. Пропускная способность также зависит от скорости воздуха (м/с). Она не может быть слишком маленькой, тогда по расчету размер воздухопровода выйдет очень большим, что экономически нецелесообразно. Слишком высокая скорость может вызвать вибрации, повышенный уровень шума и мощности вентиляционной установки. Для разных участков приточной системы рекомендуется принимать различную скорость, ее значение лежит в пределах от 1.5 до 8 м/с.
    3. Имеет значение материал воздуховода. Обычно это оцинкованная сталь, но применяются и другие материалы: различные виды пластмасс, нержавеющая или черная сталь. У последней самая высокая шероховатость поверхности, сопротивление потоку будет выше, и размер канала придется принять больше. Значение диаметра следует подбирать согласно нормативной документации.

    В Таблице 1 представлена нормаль размеров воздуховодов и толщина металла для их изготовления.

    Диаметр, мм100125140160180200225250315
    Толщина металла, мм0.50.50.50.50.50.50.60.60.6
    Диаметр, мм355400450500560630710800900
    Толщина металла, мм0.60.60.60.70.70.70.70.71.0

    Устройство вентиляционных коробов.

    Примечание: Таблица 1 отражает нормаль не полностью, а только самые распространенные размеры каналов.

    Воздуховоды производят не только круглой, но и прямоугольной и овальной формы. Их размеры принимаются через значение эквивалентного диаметра. Также новые методы изготовления каналов позволяют использовать металл меньшей толщины, при этом повышать в них скорость без риска вызвать вибрации и шум. Это касается спирально-навивных воздухопроводов, они имеют высокую плотность и жесткость.

    Расчет габаритов воздухопровода

    Сначала необходимо определиться с количеством приточного или вытяжного воздуха, которое требуется доставить по каналу в помещение. Когда эта величина известна, площадь сечения (м 2 ) рассчитывают по формуле:

    • ϑ – скорость воздуха в канале, м/с;
    • L – расход воздуха, м 3 /ч;
    • S – площадь поперечного сечения канала, м 2 ;

    Для того чтобы связать единицы времени (секунды и часы), в расчете присутствует число 3600.

    Диаметр воздуховода круглого сечения в метрах можно высчитать исходя из площади его сечения по формуле:

    S = π D 2 / 4, D 2 = 4S / π, где D – величина диаметра канала, м.

    Схема вентиляции частного дома.

    Порядок расчета размера воздухопровода следующий:

    1. Зная расход воздуха на данном участке, определяют скорость его движения в зависимости от назначения канала. В качестве примера можно принять L = 10 000 м 3 /ч и скорость 8 м/с, так как ветка системы – магистральная.
    2. Вычисляют площадь сечения: 10 000 / 3600 х 8 = 0.347 м 2 , диаметр будет – 0,665 м.
    3. По нормали принимают ближайший из двух размеров, обычно берут тот, который больше. Рядом с 665 мм есть диаметры 630 мм и 710 мм, следует взять 710 мм.
    4. В обратном порядке производят расчет действительной скорости воздушной смеси в воздухопроводе для дальнейшего определения мощности вентилятора. В данном случае сечение будет: (3.14 х 0.71 2 / 4) = 0.4 м 2 , а реальная скорость – 10 000 / 3600 х 0.4 = 6.95 м/с.
    5. В том случае если необходимо проложить канал прямоугольной формы, его габариты подбирают по рассчитанной площади сечения, эквивалентного круглому. То есть высчитывают ширину и высоту трубопровода так, чтобы площадь равнялась 0.347 м 2 в данном случае. Это может быть вариант 700 мм х 500 мм или 650 мм х 550 мм. Такие воздухопроводы монтируют в стесненных условиях, когда место для прокладки ограничено технологическим оборудованием или другими инженерными сетями.

    Подбор габаритов под реальные условия

    Основные виды воздуховодов.

    На практике определение размера воздуховода на этом не заканчивается. Дело в том, что вся система каналов для доставки воздушных масс в помещения имеет определенное сопротивление, рассчитав которое, принимают мощность вентиляционного агрегата. Эта величина должна быть экономически обоснована, чтобы не возникал перерасход электроэнергии для работы вентиляционной системы. В то же время большие габариты каналов могут стать серьезной проблемой при их монтаже, они не должны отнимать полезную площадь помещений и находиться в пределах предусмотренной для них трассы по своим габаритам. Поэтому зачастую скорость потока на всех участках системы увеличивают, чтобы габариты каналов стали меньше. Тогда потребуется сделать перерасчет, возможно, не один раз.

    Минимальное расчетное давление, развиваемое вентилятором, определяют по формуле:

    • R – сопротивление трению 1 м воздуховода круглой формы, кгс/м 2 ;
    • l – длина участка одного размера, м;
    • Z – сопротивление, возникающее в фасонных элементах и деталях системы (крестовинах, дроссельных клапанах, отводах и так далее).

    Систему разбивают на участки по такому признаку: расход воздуха на участке должен быть постоянным, в том месте, где есть ответвление и количество проходящего воздуха меняется, начинается новый участок. Каждый из них просчитывается, а результаты суммируются, что и показывает формула. Значения сопротивлений трению (R) и в элементах системы являются табличными справочными величинами, длина участка принимается по проекту или по фактическим обмерам.

    Если результат не удовлетворяет требованиям и вентилятор, развивающий такое давление, слишком мощный или дорогой, требуется повторно рассчитать диаметр каждой части приточной или вытяжной системы.

    Расчет воздуховодов вентиляции для помещений

    Не всегда есть возможность пригласить специалиста для проектирования системы инженерных сетей. Что делать если во время ремонта или строительства вашего объекта потребовался расчет воздуховодов вентиляции? Можно ли его произвести своими силами?

    Расчет вентиляции и воздуховодов позволит составить эффективную систему, которая будет обеспечивать бесперебойную работу агрегатов, вентиляторов и приточных установок. Если все подсчитано правильно, то это позволит уменьшить траты на закупку материалов и оборудования,а в последствии и на дальнейшее обслуживание системы.

    Расчет воздуховодов системы вентиляции для помещений можно проводить разными методами. Например, такими:

    • постоянной потери давления;
    • допустимых скоростей.

    Оба они точны и позволяют рассчитать систему воздуховодов с нужными характеристиками производительности и шума. Выбор конкретного способа зависит от предпочтений проектировщика.

    1. Типы и виды воздуховодов
    2. Способ расчета воздуховодов методом постоянных скоростей
    3. Схема разводки системы вентиляции.
    4. Номограмма для выбора размеров
    5. Элементы сети и местные сопротивления
    6. Расчетная таблица.
    7. Нужный диаметр диафрагмы для воздуховодов.

    Типы и виды воздуховодов

    Перед расчетом сетей нужно определить из чего они будут изготовлены. Сейчас применяются изделия из стали, пластика, ткани, алюминиевой фольги и др. Часто воздуховоды изготовляют из оцинкованной или нержавеющей стали, это можно организовать даже в небольшом цеху. Такие изделия удобно монтировать и расчет такой вентиляции не вызывает проблем.

    Кроме этого, воздуховоды могут различаться по внешнему виду. Они могут быть квадратного, прямоугольного и овального сечения. Каждый тип обладает своими достоинствами.

    • Прямоугольные позволяют сделать системы вентиляции небольшой высоты или ширины, при этом сохраняется нужная площади сечения.
    • В круглых системах меньше материала,
    • Овальные совмещают плюсы и минусы других видов.

    Для примера расчета вентиляции выберем круглые трубы из жести. Это изделия, которые используют для вентиляции жилья, офисных и торговых площадей. Расчет будем проводить одним из методов, который позволяет точно подобрать сеть воздуховодов и найти ее характеристики.

    Способ расчета воздуховодов методом постоянных скоростей

    Расчет воздуховодов вентиляции нужно начинать с плана помещений.

    Используя все нормы определяют нужное количество воздуха в каждую зону и рисуют схему разводки. На ней показываются все решетки, диффузоры, изменения сечения и отводы. Расчет производится для самой удаленной точки системы вентиляции, поделенной на участки, ограниченные ответвлениями или решетками.

    Схема разводки системы вентиляции.

    Расчет воздуховода для монтажа системы вентиляции заключается в выборе нужного сечения по всей длине, а так же нахождение потери давления для подбора вентилятора или приточной установки. Исходными данными являются значения количества проходящего воздуха в сети вентиляции. Используя схему, проведём расчет диаметра воздуховода. Для этого понадобится график потери давления.
    Для каждого типа воздуховодов график разный. Обычно, производители предоставляют такую информацию для своих изделий, либо можно найти ее в справочниках. Рассчитаем круглые жестяные воздуховоды, график для которых показан на нашем рисунке.

    Номограмма для выбора размеров

    По выбранному методу задаемся скоростью воздуха каждого участка. Она должна быть в пределах норм для зданий и помещений выбранного назначения. Для магистральных воздуховодов приточной и вытяжной вентиляции рекомендуются такие значения:

    • жилые помещения – 3,5–5,0 м/с;
    • производство – 6,0–11,0 м/с;
    • офисы – 3,5–6,0 м/с.
    • офисы – 3,0–6,5 м/с;
    • жилые помещения – 3,0–5,0 м/с;
    • производство – 4,0–9,0 м/с.

    Когда скорость превышает допустимую, уровень шума повышается до некомфортного для человека уровня.

    После определения скорости (в примере 4,0 м/с) находим нужное сечение воздуховодов по графику. Там же есть потери давления на 1 м сети, которые понадобятся для расчета. Общие потери давления в Паскалях находим произведением удельного значения на длину участка:

    Руч=Руч·Руч.

    Элементы сети и местные сопротивления

    Имеют значение и потери на элементах сети (решетки, диффузоры, тройники, повороты, изменение сечения и т. д.). Для решеток и некоторых элементов эти значения указаны в документации. Их можно рассчитать и произведением коэффициента местного сопротивления (к. м. с.) на динамическое давление в нем:

    Рм. с.=ζ·Рд.

    Где Рд=V2·ρ/2 (ρ – плотность воздуха).

    К. м. с. определяют из справочников и заводских характеристик изделий. Все виды потерь давлений суммируем для каждого участка и для всей сети. Для удобства это сделаем табличным методом.

    Расчетная таблица.

    Сумма всех давлений будет приемлимой для этой сети воздуховодов, а потери на ответвлениях должны быть в пределах 10% от полного располагаемого давления. Если разница больше, необходимо на отводах смонтировать заслонки или диафрагмы. Для этого производим расчет нужного к. м. с. по формуле:

    ζ= 2Ризб/V2,

    где Ризб – разница располагаемого давления и потерь на ответвлении. По таблице выбираем диаметр диафрагмы.

    Нужный диаметр диафрагмы для воздуховодов.

    Правильный расчет воздуховодов вентиляции позволит подобрать нужный вентилятор выбрав у производителей по своим критериям. Используя найденное располагаемое давление и общий расход воздуха в сети, это будет сделать несложно.

    • Как Убирать Квартиру После Ремонта?
    • СВИНЕЦ И СПЛАВЫ
    • Укладка тротуарной плитки
    • Применение станков с ЧПУ
    • Контакты
    • Карта сайта
    • Вакансии
    • Политика конфиденциальности
    • Реклама на сайте
    Privacy Overview

    Настоящая Политика конфиденциальности персональных данных (далее – Политика конфиденциальности) действует в отношении всей информации, которую сайт https://rems-info.ru, (далее – rems-info.ru) расположенный на доменном имени rems-info.ru (а также его субдоменах), может получить о Пользователе во время использования сайта rems-info.ru (а также его субдоменов), его программ и его продуктов.

    Использование сайта rems-info.ru означает безоговорочное согласие пользователя с настоящей Политикой и указанными в ней условиями обработки его персональной информации; в случае несогласия с этими условиями пользователь должен воздержаться от использования данного ресурса.

    1. Определения и термины

    1.1. Сайт– сайт rems-info.ru , на котором размещена общедоступная информация.

    1.2. Общедоступная информация — к общедоступной информации относятся общеизвестные сведения и иная информация, доступ к которой не ограничен.

    1.3. Пользователь – физическое лицо, использующее сайт rems-info.ru.

    1.4. Персональные данные — информация, относящаяся к определенному Пользователю, согласно Федеральному закону РФ «О персональных данных».

    1.5. Cookies — фрагменты данных, отправляемых веб-сервером браузеру при посещении сайта. R ems-info.ru автоматически получает некоторые виды информации, получаемой в процессе взаимодействия пользователей с Cайтом. Речь идет о технологиях и сервисах, таких как веб-протоколы, куки, веб-отметки, а также приложения и инструменты указанной третьей стороны. Куки. Куки – это часть данных, автоматически располагающаяся на жестком диске компьютера при каждом посещении веб-сайта. Таким образом, куки – это уникальный идентификатор браузера для веб-сайта. Куки дают возможность хранить информацию на сервере и помогают легче ориентироваться в веб-пространстве, а также позволяют осуществлять анализ сайта, оценку результатов и таргетирование поведенческой рекламы. Большинство веб-браузеров разрешают использование куки, однако можно изменить настройки для отказа от работы с куки или отслеживания пути их рассылки. При этом некоторые ресурсы могут работать некорректно, если работа куки в браузере будет запрещена.

    1.6 Сайт rems-info.ru не контролирует и не несет ответственности за сайты третьих лиц, на которые Пользователь может перейти по ссылкам, доступным на Сайте.

    2. Персональная информация пользователей, которую получает и обрабатывает сайт rems-info.ru

    2.1. В рамках настоящей Политики под «персональной информацией пользователя» понимаются:

    2.1.1. Персональная информация, которую пользователь предоставляет о себе самостоятельно при оставлении заявки, совершении покупки, регистрации (создании учётной записи) или в ином процессе использования сайта.

    2.1.2. Данные, которые автоматически передаются сайтом rems-info.ru в процессе его использования с помощью установленного на устройстве пользователя программного обеспечения, в том числе IР-адрес, информация из cookie, информация о браузере пользователя (или иной программе с помощью которой осуществляется доступ к сайту), время доступа адрес запрашиваемой страницы.

    3. Условия обработки персональной информации пользователя и её передачи третьим лицам

    3.1. Сайт rems-info.ru хранит персональную информацию пользователей в соответствии с внутренними регламентами конкретных сервисов (яндекс-метрика, Google Analytics, хостинг-провайдер).

    3.2. В отношении персональной информации пользователя сохраняется её конфиденциальность, кроме случаев добровольного предоставления пользователем информации о себе для общего доступа неограниченному кругу лиц.

    3.3. Сайт rems-info.ru вправе передать персональную информацию пользователя третьим лицам в следующих случаях:

    3.3.1. Пользователь выразил своё согласие на такие действия, путём согласия выразившегося в предоставлении таких данных;

    3.3.2. Передача необходима в рамках использования пользователем определённого сайта rems-info.ru либо для предоставления товаров и/или оказания услуги пользователю;

    3.3.3. Передача предусмотрена российским или иным применимым законодательством в рамках установленной законодательством процедуры;

    3.3.4. В целях обеспечения возможности защиты прав и законных интересов сайта rems-info.ru или третьих лиц в случаях, когда пользователь нарушает

    Пользовательское соглашение сайта rems-info.ru.

    3.4. При обработке персональных данных пользователей сайт rems-info.ru руководствуется Федеральным законом РФ «О персональных данных».

    4. Изменение Политики конфиденциальности. Применимое законодательство.

    4.1. R ems-info.ru вправе вносить изменения в политику конфиденциальности в одностороннем порядке. Изменения вступают в силу с момента их опубликования на сайте.

    4.2. К настоящей Политике и отношениям между пользователем и Сайтом rems-info.ru, возникающем в связи с применением Политики конфиденциальности, подлежит применению право Российской Федерации.

    Necessary cookies — Необходимые файлы cookie. Они абсолютно необходимы для правильной работы сайта. В эту категорию входят только файлы cookie, обеспечивающие основные функции и функции безопасности веб-сайта. Эти куки не хранят личную информацию.

    Читать еще:  Утепляем стены, пол и потолок в ванной комнате

    Расчет системы вентиляции — формулы и примеры

    Для того, чтобы в доме не было затхлости, плесени и посторонних запахов, здесь должна безотказно работать вентиляция. Будет лучше, если её качественно сделают при строительстве дома. При этом в доме должен быть постоянно свежий воздух, подходящий уровень влажности. Для этого необходимо заранее выполнить расчет вентиляции.

    расчет системы вентиляции

    1. Какие существуют нормативы
    2. Расчет системы вентиляции исходя из площади помещения
    3. Определение расхода воздуха по кратности
    4. Расчет по санитарно гигиеническим нормам
    5. Как рассчитать вентиляцию помещения в зависимости от числа людей
    6. Примеры расчетов объема воздухообмена

    Какие существуют нормативы

    Для того, чтобы обеспечить качественную и бесперебойную работу, необходимо обеспечить, чтобы она соответствовала принятым нормам. Существует несколько их разновидностей:

    1. В соответствии с санитарно-техническими нормами.
    2. На основе использования площади здания.
    3. Исходя из количества людей, которые постоянно или временно находятся в определённом помещении.
    4. На основе требуемой кратности, установленной нормативными документами.

    Вычисления в большинстве случаев проводятся на основе существующих норм по каждому помещению. Затем полученные показатели складываются. Необходимо отдельно посчитать требуемый объём приточного воздуха и того, который вентиляционная система должна вывести наружу. Если вытяжка недостаточно сильная, её мощность необходимо увеличить. Правильно сделанный расчёт естественной вентиляции обеспечит бесперебойную работу системы.

    Расчет системы вентиляции исходя из площади помещения

    При вычислении нормативов таким способом, необходимо сделать отдельный расчёт по каждой комнате. При этом площадь умножают на 3. Для того, чтобы вычислить расчётную мощность приточной вентиляции, нужно просуммировать результаты по всем жилым комнатам: гостиной, детской, спальне, кабинету.

    расчет системы вентиляции исходя из площади помещения

    Чтобы получить расчётную мощность вытяжки, потребуется сложить показатели для кухни, ванной, туалета, коридора. Обе этих величины должны быть равны. Если расчётный объём удаляемого воздуха недостаточен, необходимо усилить вытяжную вентиляцию. Один из способов — применить для этого достаточно мощные вентиляторы.

    Определение расхода воздуха по кратности

    Расход в соответствии с кратностью зависит от того, сколько раз воздух должен обновиться в заданном объёме на протяжении определённого промежутка времени. Нормативы при этом в каждом случае рассчитываются отдельно. При этом используется промежуток времени, равный одному часу. Нормативы по кратности содержатся в СНиПе «2.08.01-89 Жилые здания. Дополнение 4».

    расход воздуха в помещении

    Вычисления выполняются по следующей формуле.

    В этой формуле применяются следующие обозначения:

    • КВ — количество, которое должно поступить в течение часа;
    • КР — кратность;
    • ОП — объём помещения, для которого проводятся вычисления.

    В каждом случае кратность может быть различной. Поэтому расчёты производятся отдельно. Затем определяется суммарный объём, который должен поступить в дом или выйти наружу в течение часа. При этом они производятся отдельно для поступающего воздуха в жилых комнатах и того, который должен быть выведен наружу через кухню, ванную или санузел.

    Рассчитанный объём должен поступить в помещение, при этом через вытяжку должно выйти такое же количество. Обычно приточные каналы располагают в чистых помещениях: спальне, гостиной или детской, а вытяжные — в кухне или санузле. При этом неприятные запахи из туалета или кухни не будут попадать в жилые комнаты.

    Если при определении вентиляции расчётная кратность оказалась ниже, чем указано в документе, то следует внести корректировки для того, чтобы вентиляционная система соответствовала нормам. Иногда после установке системы оказывается, что сделанная система не обеспечивает нужный объём свежего воздуха. В таком случае можно сделать дополнительные отверстия.

    В упомянутом нормативном документе указаны не все типы помещений. В этом случае для определения объёма поступающего воздуха считают, что на каждый квадратный метр должно в течение часа поступать три кубометра.

    При использовании нормативов по кратности нужно округлять полученный объём в большую сторону до ближайшего значения, кратного пяти.

    Расчет по санитарно гигиеническим нормам

    При использовании санитарно гигиенических норм нужно использовать площадь всего здания. При этом для каждого квадратного метра приток должен составлять по 3 куб. м в течение часа.

    Для получения суммарного притока за этот период, который необходимо обеспечить, нужно эту площадь умножить на три. Расчет вентиляции производственного помещения может производиться с использованием описанного здесь способа.

    Как рассчитать вентиляцию помещения в зависимости от числа людей

    Если основываться на количестве находящихся здесь, то будет нужно учитывать тех, кто проживает постоянно и тех, кто может временно пребывать в помещении. На каждого человека необходим объём воздуха 60, если он здесь живёт и 20 куб. м, если только бывает здесь. Чтобы в квартире всегда был свежий воздух, соответствующий объём должен поступать каждый час.

    Вычисление выполняют по каждому отдельному помещению. При этом надо учесть, кто в нём будет находиться постоянно, а кто временно. При этом эти цифры определяют исходя из здравого смысла. Полученные значения используются ля определения необходимого притока воздуха. Чтобы определить мощность вытяжки площадь кухни и служебных помещений умножают на 3. Полученные значения должны совпадать. Если это не так, то усиливают приточную или вытяжную вентиляцию соответственно. Система отопления должна обеспечивать прогрев поступающего воздуха в холодное время года.

    Примеры расчетов объема воздухообмена

    Далее приводится пример расчёта вентиляции исходя из кратности обмена. Для этого будет рассмотрен частный дом, имеющий такие помещения:

    • кухня — 19 кв. м;
    • гостиная — 41 кв. м;
    • санузел — 3 кв. м;
    • детская — 14 кв. м;
    • кабинет — 17 кв. м;
    • спальня — 22 кв. м;
    • ванная — 4 кв. м;
    • коридор — 6 кв. м.

    В доме высота потолков составляет 3 м. Для расчёта нужно определить объём каждого помещения. При этом получим следующие значения:

    • кухня — 57 куб. м;
    • гостиная — 123 куб. м;
    • санузел — 9 куб. м;
    • детская — 42 куб. м;
    • кабинет — 51 куб. м;
    • спальня — 66 куб. м;
    • ванная — 12 куб. м;
    • коридор — 18 куб. м.

    схема воздухообмена

    Используя таблицу значений кратности из нормативного документа проводится расчёт в соответствии с приведённой выше формулой:

    • кухня — 57 = 57 (19 кв. м х 3) — округляем до 60;
    • гостиная — 3 х 123 — округляем до 370;
    • санузел — 9 = 9 (3 кв. м х 3) — округляем до 10;
    • детская — 1 х 42 — округляем до 45;
    • кабинет — 1 х 51 — округляем до 55;
    • спальня — 1 х 66 — округляем до 70;
    • ванная — 12 = 12 (4 кв. м х 3) — округляем до 15;
    • коридор — 18 = 18 (6 кв. м х 3) — округляем до 20;

    Здесь при расчётах было учтено, что в нормативном документе отсутствует кратность для ванной, коридора, санузла и кухни. В этом случае площадь соответствующих помещений умножили на 3. После этого итоговую величину округлили в большую сторону до значения, кратного 5.

    Теперь делают суммирование по помещениям, в которые первоначально поступает чистый воздух — это гостиная, кабинет, спальня, детская. После суммирования будет получено 370 + 55 + 70 + 45 = 540 куб. м. Столько воздуха должно поступать в дом благодаря использованию вентиляционной системы.

    Теперь необходимо просуммировать значения по тем помещениям, где есть вытяжная вентиляция. Речь идёт о коридоре, кухне, ванной и санузле. Будет получено значение 20 + 60 + 15 + 10 = 105 куб. м. Это количество воздуха согласно расчётам должно выводится наружу.

    Видно, что 105 расчет воздухообмена

    Пример расчёта по санитарным нормам выглядит следующим образом. Для примера речь пойдёт о квартире, в которой живёт семья из 4 человек. Здесь периодически бывают ещё 3 человека. Чтобы получить объём воздуха, который должен обновляться в течение каждого часа, необходимо учесть приведённые в этой статье нормы.

    Для получения результата надо выполнить вычисления для каждого помещения. Далее приведена одна из возможных ситуаций:

    1. В спальне постоянно находятся 2 человека. Для них норма равна 2 х 60 = 120 куб. м.
    2. В кабинете работает 1. Для него потребуется 1 х 60 = 60 куб. м воздуха.
    3. В гостиной постоянно находится двое и ещё двое приходят туда время от времени. Для того, чтобы им хватала свежего воздуха, 2 х 20 + 2 х 60 = 160 куб. м.
    4. В детской находится 1 человек. Для него понадобится 1 х 60 = 60 куб. м воздуха.

    Если просуммировать эти значения, то получится, что в течение каждого часа необходимо поступление 120 + 60 + 160 + 60 = 400 куб. м свежего воздуха.

    Чтобы определить, как должна работать вытяжка, используют способ, изложенный для расчётов по кратности. Полученную цифру сравнивают в этом примере с 400 куб. м. Если она недостаточно велика, то необходимо сделать вытяжку более мощной.

    Расчет сечения воздуховодов

    1. Калькуляторы расчёта параметров вентиляционной системы
    2. Расчет воздуховодов вентиляции
      1. Типы воздуховодов
      2. Расчет поперечного сечения воздуховода
      3. Расчет сечения воздуховодов методом допустимых скоростей
    3. Калькулятор для расчета и подбора компонентов системы вентиляции
      1. Пример расчета вентиляции с помощью калькулятора
    4. Расчет воздуховодов
      1. Расчет воздуховодов или проектирование систем вентиляции
    5. Как рассчитать сечение и диаметр воздуховода?
      1. Факторы, оказывающие влияние на размеры воздухопроводов
      2. Расчет габаритов воздухопровода
      3. Подбор габаритов под реальные условия

    Калькуляторы расчёта параметров вентиляционной системы

    Для жилых помещений расчёт необходимой производительности вентиляции производится:

    1. По количеству человек, одновременно проживающих в помещении;
    2. По площади жилого помещения;
    3. По кратности воздухообмена.

    Расчёт по количеству человек производится исходя из правила: 30 м³/час на человека, при общей площади квартиры на одного человека более 20 м².

    Расчёт воздухообмена по количеству человек (при общей площади квартиры на одного человека более 20 м²)

    Расчёт по площади жилого помещения, производится исходя из правила: 3 м³/час на 1 м² площади помещения, при общей площади квартиры на одного человека менее 20 м².

    Расчёт воздухообмена по площади помещения (при общей площади квартиры на одного человека менее 20 м²)

    Расчёт воздухообмена по кратности производится, исходя из минимального количества смен воздуха в час в помещении. Для спальни, общей, детской комнаты принимается равным 1,0 (СНиП 31-01-2003 Таблица 9.1).

    Расчёт воздухообмена по кратности

    Наибольшее полученное из трёх расчётов значение воздухообмена и будет являться потребной производительностью вентиляции. Зная производительность вентиляции, можно рассчитать минимальное сечение воздуховодов. Расчёт производится из условия максимальной скорости воздуха в воздуховодах — 4 м/с. При больших значениях, возможно появление шума от передвижения воздушных масс.

    Расчёт площади сечения воздуховода

    Зная минимальное проходное сечение воздуховода, производим выбор подходящего типоразмера воздуховода из сводных таблиц.

    Либо производим самостоятельный расчёт наиболее подходящего типоразмера воздуховода. Для этого можно воспользоваться калькуляторами расположенными ниже.

    Зная диаметр или ширину и высоту воздуховода, можно рассчитать его фактическое проходное сечение и сравнить с расчётным значением.

    Расчёт фактической площади сечения круглого воздуховода

    Расчёт фактической площади сечения прямоугольного воздуховода

    Расчет воздуховодов вентиляции

    При устройстве системы вентиляции важно правильно подобрать и определить параметры всех элементов системы. Необходимо найти требуемое количество воздуха, подобрать оборудование, рассчитать воздуховоды, фасонные элементы и другие комплектующие вентиляционной сети. Как проводится расчет воздуховодов вентиляции? Что влияет на их размер и сечение? Разберем этот вопрос подробнее.

    Воздуховоды необходимо рассчитывать с двух точек зрения. Во-первых, подбирается необходимое сечение и форма. При этом необходимо учитывать количество воздуха и другие параметры сети. Также уже при изготовлении рассчитывается количество материала, например, жести, для изготовления труб и фасонных элементов. Такой расчет площади воздуховодов позволяет заранее определить количество и стоимость материала.

    Типы воздуховодов

    Для начала пару слов скажем и материалах и типах воздуховодов. Это важно из-за того, что в зависимости от формы воздуховодов существуют особенности его расчета и выбора площади поперечного сечения. Также важно ориентироваться и на материал, так как от него зависит особенности движения воздуха и взаимодействие потока со стенками.

    Если коротко, то воздуховоды бывают:

    • Металлические из оцинкованной или черной стали, нержавейки.
    • Гибкие из алюминиевой или пластиковой пленки.
    • Жесткие пластиковые.
    • Тканевые.

    По форме воздуховоды изготовливаются круглого сечения, прямоугольного и овального. Наиболее часто используются круглые и прямоугольные трубы.

    Большая часть из описанных воздуховодов изготовливаются в заводских условиях, например, гибкие из пластика или тканевые, и изготовить их на объекте или в небольшой мастерской сложно. Большая часть изделий, которым требуется расчет, производят из оцинкованной стали или нержавейки.

    Из оцинкованной стали изготовляются как прямоугольные, так и круглые воздуховоды, причем для производства не требуется особо дорогостоящее оборудование. В большинстве случаев достаточно гибочного станка и устройства для изготовления круглых труб. Не считая мелкого ручного инструмента.

    Расчет поперечного сечения воздуховода

    Основная задача, которая возникает при расчете воздуховодов – это выбор поперечного сечения и формы изделия. Этот процесс проходит при проектировании системы как в специализированных компаниях, так и при самостоятельном изготовлении. Необходимо провести расчет диаметра воздуховода или сторон прямоугольника, выбрать оптимальное значение площади поперечного сечения.

    Расчет поперечного сечения проводят двумя способами:

    • допустимых скоростей;
    • постоянной потери давления.

    Метод допустимых скоростей проще для неспециалистов, поэтому рассмотрим в общих чертах его.

    Расчет сечения воздуховодов методом допустимых скоростей

    Расчет сечения воздуховода вентиляции методом допустимых скоростей базируется на нормированной максимальной скорости. Скорость выбирается для каждого типа помещения и участка воздуховода в зависимости от рекомендуемых значений. Для каждого типа здания существуют максимально допустимые скорости в магистральных воздуховодах и ответвлениях, выше которых использование системы затруднено из-за шума и сильных потерь давления.

    Рис. 1 (Схема сети для расчета)

    В любом случае, перед началом расчета необходимо составить план системы. Для начала необходимо рассчитать требуемое количество воздуха, которое нужно подать и удалить из помещения. На этом расчете будет базироваться дальнейшая работа.

    Сам процесс расчета сечения методом допустимых скоростей упрощенно состоит из таких этапов:

    1. Создается схема воздуховодов, на которой отмечаются участки и расчетное количество воздуха, которое будет по ним транспортироваться. Лучше на ней же указать все решетки, диффузоры, изменения сечения, повороты и клапаны.
    2. По подобранной максимальной скорости и количеству воздуха рассчитывается сечение воздуховода, его диаметр или размер сторон прямоугольника.
    3. После того, как известны все параметры системы, можно подобрать вентилятор необходимой производительности и напора. Подбор вентилятора базируется на расчете падения давления в сети. Это существенно сложнее, чем просто подобрать сечение воздуховода на каждом участке. Этот вопрос мы рассмотрим в общих чертах. Так как иногда просто подбирают вентилятор с небольшим запасом.

    Для расчета необходимо знать параметры максимальной скорости воздуха. Их берут из справочников и нормативной литературы. В таблице приведены значения для некоторых зданий и участков системы.

    Калькулятор для расчета и подбора компонентов системы вентиляции

    в частных домах и квартирах

    Калькулятор позволяет рассчитать основные параметры вентиляционной системы по методике, о которой рассказывается в разделе Расчет систем вентиляции. С его помощью можно определить:

    • Производительность системы, обслуживающей до 4-х помещений.
    • Размеры воздуховодов и воздухораспределительных решеток.
    • Сопротивление воздухопроводной сети.
    • Мощность калорифера и ориентировочные затраты на электроэнергию (при использовании электрического калорифера).

    Пример расчета, расположенный ниже, поможет вам разобраться с тем, как пользоваться калькулятором.

    Пример расчета вентиляции с помощью калькулятора

    На этом примере мы покажем, как рассчитать приточную вентиляцию для 3-х комнатной квартиры, в которой живет семья из трех человек (двое взрослых и ребенок). Днем к ним иногда приезжают родственники, поэтому в гостиной может длительное время находиться до 5 человек. Высота потолков квартиры — 2,8 метра. Параметры помещений:

    Нормы расхода для спальни и детской зададим в соответствии с рекомендациями СНиП — по 60 м³/ч на человека. Для гостиной ограничимся 30 м³/ч, поскольку большое количество людей в этой комнате бывает нечасто. По СНиП такой расход воздуха допустим для помещений с естественным проветриванием (для проветривания можно открыть окно). Если бы мы и для гостиной задали расход воздуха 60 м³/ч на человека, то требуемая производительность для этого помещения составила бы 300 м³/ч. Стоимость электроэнергии для нагрева такого количества воздуха оказалась бы очень высокой, поэтому мы пошли на компромисс между комфортом и экономичностью. Для расчета воздухообмена по кратности для всех помещений выберем комфортный двукратный воздухообмен.

    Магистральный воздуховод будет прямоугольным жестким, ответвления — гибкими шумоизолированными (такое сочетание типов воздуховодов не самое распространенное, но мы выбрали его в демонстрационных целях). Для дополнительной очистки приточного воздуха будет установлен угольно-пылевой фильтр тонкой очистки класса EU5 (расчет сопротивления сети будем вести при загрязненных фильтрах). Скорости воздуха в воздуховодах и допустимый уровень шума на решетках оставим равными рекомендуемым значениям, которые заданы по умолчанию.

    Расчет начнем с составления схемы воздухораспределительной сети. Эта схема позволит нам определить длину воздуховодов и количество поворотов, которые могут быть как в горизонтальной, так и вертикальной плоскости (нам нужно посчитать все повороты под прямым углом). Итак, наша схема:

    Сопротивление воздухораспределительной сети равно сопротивлению самого длинного участка. Этот участок можно разделить на две части: магистральный воздуховод и самое длинное ответвление. Если у вас есть два ответвления примерно одинаковой длины, то нужно определить, какое из них имеет большее сопротивление. Для этого можно принять, что сопротивление одного поворота равно сопротивлению 2,5 метров воздуховода, тогда наибольшее сопротивление будет иметь ответвление, у которого значение (2,5* кол-во поворотов + длина воздуховода) максимально. Выделять из трассы две части необходимо для того, чтобы можно было задать разный тип воздуховодов и разную скорость воздуха для магистрального участка и ответвлений.

    В нашей системе на всех ответвлениях установлены балансировочные дроссель-клапаны , позволяющие настроить расходы воздуха в каждом помещении в соответствии с проектом. Их сопротивление (в открытом состоянии) уже учтено, поскольку это стандартный элемент вентиляционной системы.

    Длина магистрального воздуховода (от воздухозаборной решетки до ответвления в помещение № 1) — 15 метров, на этом участке есть 4 поворота под прямым углом. Длину приточной установки и воздушного фильтра можно не учитывать (их сопротивление будет учтено отдельно), а сопротивление шумоглушителя можно принять равным сопротивлению воздуховода той же длины, то есть просто посчитать его частью магистрального воздуховода. Длина самого длинного ответвления составляет 7 метров, на нем есть 3 поворота под прямым углом (один — в месте ответвления, один — в воздуховоде и один — в адаптере). Таким образом, мы задали все необходимые исходные данные и теперь можем приступать к расчетам (скриншот). Результаты расчета сведены в таблицы:

    Читать еще:  Как сделать вентиляцию в гараже своими руками: 52 фото и полезные схемы

    Расчет вытяжной вентиляции все формулы и примеры

    Правильное устройство вентиляции в доме значительно улучшает качество жизни человека. При неправильном расчете приточно – вытяжной вентиляции возникает куча проблем – у человека со здоровьем, у постройки с разрушением.

    Перед началом строительства обязательно и необходимо произвести расчёты и, соответственно, применить их в проекте.

    ФИЗИЧЕСКИЕ СОСТАВЛЯЮЩИЕ РАСЧЁТОВ

    По способу работы, в настоящее время, вентиляционные схемы делятся на:

    1. Вытяжные. Для удаления использованного воздуха.
    2. Приточные. Для впуска чистого воздуха.
    3. Рекуперационные. Приточно-вытяжные. Удаляют использованный и впускают чистый.


    В современном мире схемы вентиляции включают в себя различное дополнительное оборудование:

    1. Устройства для подогрева или охлаждения подаваемого воздуха.
    2. Фильтры для очистки запахов и примесей.
    3. Приборы для увлажнения и распределения воздуха по помещениям.


    При расчёте вентиляции учитывают следующие величины:

    1. Расход воздуха в куб.м./час.
    2. Давление в воздушных каналах в атмосферах.
    3. Мощность подогревателя в квт-ах.
    4. Площадь сечения воздушных каналов в кв.см.

    Расчет вытяжной вентиляции пример

    Перед началом расчёта вытяжной вентиляции необходимо изучить СН и П (Система Норм и Правил) устройства вентиляционных систем. По СН и П количество воздуха необходимого для одного человека зависит от его активности.

    Маленькая активность – 20 куб.м./час. Средняя – 40 кб.м./ч. Высокая – 60 кб.м./ч. Далее учитываем количество человек и объём помещения.

    Кроме этого необходимо знать кратность – полный обмен воздуха в течение часа. Для спальни она равна единице, для бытовых комнат – 2, для кухонь, санузлов и подсобных помещений – 3.

    Для примера – расчёт вытяжной вентиляции комнаты 20 кв.м.

    Допустим, в доме живут два человека, тогда:

    V(объём) комнаты равен: SхН, где Н – высота комнаты (стандартная 2,5 метра).

    V = S х Н = 20 х 2,5 = 50 куб.м.

    Далее V х 2 (кратность) = 100 кб.м./ч. По другому – 40 кб.м./ч. (средняя активность) х 2 (человека) = 80 куб.м./час. Выбираем большее значение – 100 кб.м./ч.

    В таком же порядке рассчитываем производительность вытяжной вентиляции всего дома.

    Расчет вытяжной вентиляции производственных помещений

    При расчёте вытяжной вентиляции производственного помещения кратность равна 3.

    Пример: гараж 6 х 4 х 2,5 = 60 куб.м. Работают 2 человека.

    Высокая активность – 60 куб.м./час х 2 = 120 кб.м./ч.

    V – 60 куб.м. х 3 (кратность) = 180 кб.м./ч.

    Выбираем большее – 180 куб.м./час.

    Как правило, унифицированные вентиляционные системы, для простоты установки разделяются на:

    • 100 – 500 куб.м./час. – квартирные.
    • 1000 – 2000 куб.м./час. – для домов и усадеб.
    • 1000 – 10000 куб.м./час. – для заводских и промышленных объектов.

    Расчет приточно вытяжной вентиляции

    ВОЗДУХОНАГРЕВАТЕЛЬ

    В условиях климата средней полосы, воздух, поступающий в помещение необходимо подогревать. Для этого устанавливают приточную вентиляцию с обогревом входящего воздуха.

    Нагрев теплоносителя осуществляется различными путями – электро калорифером, впуск воздушных масс около батарейного или печного отопления. Согласно СН и П температура входящего воздуха должна быть не менее 18 гр. цельсия.

    Соответственно мощность воздухонагревателя рассчитывается в зависимости от самой низкой ( в данном регионе) уличной температуры. Формула для расчета максимальной температуры нагрева помещения воздухонагревателем:

    N /V х 2,98 где 2,98 – константа.

    Пример: расход воздуха – 180 куб.м./час. (гараж). N = 2 КВт.

    Далее 2000 вт./ 180 кб.м./ч. х 2,98 = 33 град.ц.

    Таким образом, гараж можно нагреть до 18 град. При уличной температуре минус 15 град.

    ДАВЛЕНИЕ И СЕЧЕНИЕ

    На давление и, соответственно, скорость передвижения воздушных масс влияет площадь сечения каналов, а также их конфигурация, мощность электро вентилятора и количество переходов.

    При расчёте диаметра каналов эмпирически принимают следующие величины:

    • Для помещений жилого типа – 5,5 кв.см. на 1 кв.м. площади.
    • Для гаража и других производственных помещений – 17,5 кв.см. на 1 кв.м.

    При этом добиваются скорости потока 2,4 – 4,2 м/сек.

    О РАСХОДЕ ЭЛЕКТРОЭНЕРГИИ

    Расход электроэнергии напрямую зависит от длительности времени работы электронагревателя, а время – функция от температуры окружающего воздуха. Обыкновенно, воздух необходимо подогревать в холодное время года, иногда летом в прохладные ночи. Для расчёта используется формула:

    S = (T1 х L х d х c х 16 + Т2 х L х c х n х 8) х N/1000

    В этой формуле:

    S – количество электроэнергии.

    Т1 – максимальная дневная температура.

    Т2 – минимальная ночная температура.

    L – производительность куб.м./час.

    с – объёмная теплоёмкость воздуха – 0, 336 вт х час/ кб.м./ град.ц. Параметр зависит от давления, влажности и температуры воздуха.

    d – цена электроэнергии днём.

    n – цена электроэнергии ночью.

    N – количество дней в месяце.

    Таким образом, если придерживаться санитарных норм, стоимость вентиляции существенно повышается, зато комфортность проживающих улучшается. Поэтому при устройстве вентиляционной системы целесообразно найти компромисс между ценой и качеством.

    Расчет вентиляции помещения

    Переоценить роль вентиляционных систем в современных зданиях просто невозможно. Благоприятный микроклимат, определяемый температурой, влажностью и подвижностью воздуха, способствует хорошему самочувствию людей, которые находятся в здании. Тогда как дефицит кислорода в помещении может спровоцировать гипоксию органов, в том числе, мозга. Кроме того, недостаточная тяга зачастую приводит к застойным явлениям, это особенно актуально для помещений с высоким уровнем влажности, — здесь могут появиться неприятные запахи, постоянная сырость, трудновыводимый грибок на стенах, также возможно гниение деревянных элементов, коррозия металлических.

    Чрезмерная тяга тоже не лучший вариант, так как в этом случае заметно увеличивается объем воздушных масс, направляемых из помещений в атмосферу, — зимой это приводит к потере тепла и существенному росту затрат на отопление дома.

    Содержание

    1. Расчет вентиляции: что нужно знать
    2. Расчет вентиляции: вытяжной и приточной
    3. Расчет вытяжной вентиляции: пример
    4. Вместо вывода

    Расчет вентиляции: что нужно знать

    Расчет вентиляции необходим для определения оптимального вида системы воздухообмена, ее параметров, которые смогут обеспечить сочетание энергоэффективности объекта и благоприятного микроклимата.

    В соответствии со СНиП 13330.2012, 41-01-2003 расчет вентиляции осуществляют еще на стадии проектирования объекта. Другое дело, что не всегда созданная при строительстве объекта вентиляция оказывается эффективной.

    Самый простой способ — проверка тяги с помощью пламени зажигалки или бумажных полосок. Если такая проверка не позволила сделать вывод о нарушении проходимости вентиляционных каналов, значит проблема в неправильно подобранном сечении.

    Если вентиляция уже в доме есть, но она не способна обеспечить оптимальные условия, можно использовать дополнительное оборудование, например, бризеры. Современные модели бризеров характеризуются низким уровнем шума, высокой производительностью, имеют многоступенчатую систему фильтрации воздуха. Если же вы пока находитесь на этапе проектирования вентиляции, рекомендуем максимально внимательно подойти к расчетам, чтобы впоследствии не пришлось совершенствовать смонтированную систему.

    Санитарные требования нормативных документов

    Нормативы ГОСТ 30494-2011 определяют допустимые и оптимальные параметры качества воздушных масс с учетом назначения помещений.

    В зависимости от назначения помещения и сезона определяются допустимая и оптимальная температура воздуха (от +17 до +27 °С), относительная влажность (от 30 до 60%), желаемая скорость воздуха (от 0,15 до 0,30 м/с). Кроме того, санитарные нормы регламентируют максимально допустимый уровень шума, чистоту воздуха, минимальный расход на одного человека свежего воздуха.

    При расчете вентиляции в жилых помещениях используют удельные нормы для определения оптимального воздухообмена. Расчет вентиляционной системы на производстве осуществляется с учетом допустимой концентрации загрязняющих воздух веществ. Если на производстве качество и количество продукции определяется не производительностью сотрудников, а точностью режима технологии, в помещении поддерживаются параметры воздуха, подходящие для производственного процесса. Если же производительность определяют сотрудники в помещении, акцент смещается на создание благоприятных, комфортных условий для персонала.

    Выписка из ГОСТ 30494-2011

    Таблица 1 — Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в обслуживаемой зоне помещений жилых зданий и общежитий

    Температура воздуха, °С

    Результирующая температура, °С

    Скорость движения воздуха, м/с

    допустимая, не более

    оптимальная, не более

    допустимая, не более

    Жилая комната в районах с температурой минус 31°С и ниже

    Помещения для отдыха и учебных занятий

    Примечание — Значения в скобках относятся к домам для престарелых и инвалидов.


    Расчет вентиляции: вытяжной и приточной

    По способу работы вентиляционные схемы можно разделить на три группы: вытяжные (удаляющие использованный воздух), приточные (впускающие в помещение чистый воздух), и (рекуперационные совмещающие функции первой и второй категорий).

    В любом случае при расчете вентиляции необходимо принимать во внимание множество факторов — это:

    • давление в воздушных каналах;
    • расход воздуха;
    • мощность подогревателя;
    • площадь сечения вентканалов.

    Расчет вытяжной вентиляции: пример

    Перед расчетом любой вентиляционной системы нужно изучить СНиП устройства вентиляции. В соответствии с нормами, объем воздуха для человека определяется его активностью. Так, при малой активности достаточно 20 куб.м./час, при средней активности человека расчетное количество воздуха увеличивается в два раза, при высокой активности — в три. Под активностью понимается время, которое человек проводит в помещении. Если человек большую часть времени проводит в комнате, выбирается максимальный параметр, если же человек заходит в помещение время от времени, для него достаточно будет 20 куб.м./час. Например, если мы рассчитываем вентиляцию для двух человек, один из которых постоянно находится в комнате, а другой появляется редко, мы получим значение 80 куб.м./час (сумма 60 и 20 куб.м./час).

    Для расчетов нужно знать и кратность — полную замену воздуха в помещении в течение часа. Кратность определяется назначением помещений: в спальне кратность равна 1, в бытовых комнатах — 2, в подсобных помещениях, санузлах, на кухнях — 3.

    Рассмотрим расчет вытяжной вентиляции на примере комнаты площадью 25 кв.м, в которой живет три человека.

    Формула 1. L=V*K, где

    • V — это объем помещения;
    • K — кратность.

    При этом, V=S*H, где

    • S — площадь помещения;
    • H — высота комнаты (стандартная высота равна 2,5 м).

    Если подставить в формулу наши параметры, вычислим, что объем помещения будет равен 62,5 куб.м. Далее умножаем объем на кратность (2) и получаем 125 куб.м./час.

    Формула 2. L=N*M, где

    • N — количество людей в помещении;
    • M — средняя активность этих людей (20, 40 или 60 куб.м./час, в зависимости от того, насколько много времени человек проводит в помещении).

    Возьмем для расчета среднюю активность каждого (40 куб.м./час), умножим на 3 (человека), получим 120 куб.м./час.

    Выбираем большее значение — это 125 куб.м./час.

    Таким же образом необходимо рассчитать производительность вытяжной вентиляционной системы для всех помещений в доме.

    Обычно унифицированные системы вентиляции делятся на три типа для простоты установки: квартирные (100-500 куб.м./час), для усадеб и коттеджей (1000-2000 куб.м./час), для промышленных и производственных объектов (1000-10000 куб.м./час).

    Несколько слов про нагрев воздуха.

    Если мы говорим про вентиляционные системы относительно региона их применения, становится очевидным, что без подогрева воздуха, поступающего в помещение, обойтись не удастся. Поэтому при проектировании вентиляционной системы мы рекомендуем выбирать приточную вентиляцию с обогревом воздуха, входящего в помещение.

    Нагрев может осуществляться по-разному — электрическим калорифером, впуском воздуха возле печного или батарейного отопления. В соответствии с требованиями СНиПов температура поступающего воздуха не должна быть ниже 18 °С. Мощность воздухонагревателя необходимо рассчитывать с учетом наиболее низкой температуры в регионе.

    Формула проста: Tmax = N/V*2,98, где

    • Tmax — максимальная температура нагрева помещения воздухонаревателем;
    • N — мощность воздухонагревателя;
    • V — расход воздуха в час;
    • 2,98 — постоянная переменная, коэффициент.

    Вычисляем оптимальный диаметр вентиляционного канала.

    После того, как все расчеты завершены, оптимальные характеристики подобраны, можно делать чертеж, строить план и подбирать необходимое оборудование.

    Обратите особое внимание на сечение воздуховода — оно может быть прямоугольным и круглым. В случае, если вы имеете дело с прямоугольным воздуховодом, не забывайте о том, что соотношение его сторон не должно превышать 3:1, иначе в вентиляции практически не будет тяги, зато шума ожидается много.

    Важнейший параметр — скорость в вентиляционной магистрали. На прямых участках скорость воздушных масс не должна быть ниже 5 м/с, на поворотах допускается падение скорости до 3 м/с (исключение для естественной вентиляции, здесь достаточная скорость 1м/час).

    При расчете оптимального диаметра вентиляционных каналов эмпирически используют следующие параметры:

    • для жилых помещений на 1 кв.м. площади должно приходиться 5,5 кв.см сечения канала;
    • для производственных помещений этот параметр увеличивается чуть больше, чем в три раза — до 17,5 кв.см. на 1 кв.м. площади помещения.

    Вместо вывода

    Расчет вентиляции может проводиться разными способами. И результаты также могут получиться различными — при этом все они верны. Что выбрать? Это зависит от того, какую сумму вы готовы потратить на оборудование вентиляционной системы — расчеты по кратности и площади получаются более доступными в финансовом плане, чем расчеты по санитарным нормам. Но в последнем случае вы сможете рассчитывать на более комфортные условия проживания.

    Ориентируйтесь на свои желания и финансовые возможности, а мы вам поможем подобрать оборудование и осуществить профессиональный монтаж. Мы работаем на отечественном рынке климатической техники с 2005 года, и сегодня прочно занимаем лидерскую нишу в своей сфере, предлагая клиентам широкий спектр услуг, гарантию высокого качества работ и доступные цены. В частности, у нас вы можете заказать расчет и установку вентиляционной системы «под ключ» — мы возьмем на себя решение всех вопросов, связанных с проектированием, комплектацией, монтажом вентиляционной системы, с пуско-наладочными работами, сервисным и гарантийным обслуживанием систем. Обращайтесь!

    Расчет вентиляции

    Работать, а тем более жить в помещении, в котором душно или трудно дышать, тяжело и неприятно. В этом случае для нормального функционирования человека в помещении и организуется вентиляция. Но для чего нужно делать ее расчет?

    Если Вы чувствуете, что воздухообмен в помещении необходимо как-то скорректировать, свежего воздуха недостаточно или устали постоянно проветривать, замерзать или болеть, Вам нужно правильно и точно определить оборудование, которое справится с запросом. Для этого требуется знать нормы и показатели вентиляции для конкретного помещения. Как рассчитать оптимальную вентиляцию? Сейчас все расскажем.

    Расчет и нормы вентиляции

    Как говорится, хорошо сделанная работа – это работа, которую не видно. Так можно сказать и о правильно настроенной вентиляции. Ведь если в дом поступает достаточное количество свежего воздуха и ровно такое же количество отработанного отводится одновременно, то риск заболеваний на почве затхлого воздуха тоже уменьшается, что вдвойне приятно, поскольку такие заболевания чаще всего становятся хроническими. Это также значит, что риск появления конденсата, плесени или грибка сводится к минимуму, поскольку вентиляция способствует долгой жизни дома, квартиры или комнаты при верных расчете и установке.

    Проверка вентиляции

    Если вентиляция в доме уже стоит, но вызывает сомнения эффективность ее работы, то стоит проверить ее. Делается это довольно легко: можно взять лист бумаги и поднести к решетке вентиляции. Если лист начнет затягивать в решетку, значит вентиляция работает исправно. Если нет, значит она перекрыта или забита. Так бывает, когда соседи делают ремонт и перекрывают общую вентиляцию для защиты от пыли и грязи. Если же причина иная, стоит обратиться в специальные службы.

    Виды вентиляции. Расчет естественной вентиляции

    Начнем, пожалуй, с естественной и принудительной вентиляции. Как понятно из названия, к первому типу относятся проветривание и все, что никак не связано с устройствами. Соответственно, к механической вентиляции относятся вентиляторы, вытяжки, приточные клапаны и другая техника для создания принудительного потока воздуха.

    Естественная вентиляция хороша умеренной скоростью этого потока, что создает комфортные условия в помещении для человека – ветер не ощущается. Хотя правильно установленная качественная принудительная вентиляция также не приносит сквозняков. Но есть и минус: при низкой скорости потока воздуха при естественной вентиляции необходимо более широкое сечение для его подачи. Как правило, наиболее эффективное проветривание обеспечивается с полностью открытыми окнами или дверьми, что ускоряет процесс воздухообмена, но может негативно сказаться на здоровье жильцов, особенно в зимний период года. Если мы проветриваем дом, частично открыв окна или полностью открыв форточки, на такое проветривание необходимо около 30–75 минут, а здесь возможно замерзание оконной рамы, что вполне может привести к конденсату, а холодный воздух, поступающий длительное время, ведет к проблемам со здоровьем. Открытые настежь окна ускоряют воздухообмен в помещении, сквозное проветривание займет примерно 4–10 минут, что безопасно для оконных рам, но при таком проветривании почти все тепло в доме выходит наружу, и долгое время температура внутри помещений достаточно низка, что опять-таки повышает риск заболеваний.

    Не стоит также забывать про набирающие популярность приточные клапаны, которые устанавливаются не только на окнах, но и на стенах внутри комнат (стеновой приточный клапан), если конструкция окон не предусматривает такие клапаны. Стеновой клапан осуществляет инфильтрацию воздуха и представляет собой продолговатый патрубок, устанавливаемый в стену насквозь, закрытый с обеих сторон решетками и регулируемый изнутри. Он может быть как полностью открытым, так и закрытым тоже полностью. Для удобства в интерьере рекомендуется ставить такой клапан рядом с окном, поскольку его можно будет спрятать под тюлем, и поток проходящего воздуха будет нагреваться радиаторами, расположенными под подоконниками.

    Для нормальной циркуляции воздуха по всей квартире необходимо обеспечить его свободное перемещение. Для этого на межкомнатных дверях ставят переточные решетки, чтобы воздух спокойно перемещался от приточных систем к вытяжным, проходя по всему дому, через все комнаты. Важно учитывать, что правильным считается такой поток, при котором самая пахнущая комната (туалет, ванная комната, кухня) – последняя. Если нет возможности установить переточную решетку, достаточно просто оставить зазор между дверью и полом, примерно 2 см. Этого вполне достаточно, чтобы воздух легко перемещался по дому.

    В случаях, когда естественной вентиляции не хватает или нет желания ее устраивать, переходят к использованию механической вентиляции.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector